(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(dbl(0)) → mark(0)
active(dbl(s(X))) → mark(s(s(dbl(X))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(X, Y))) → mark(cons(dbl(X), dbls(Y)))
active(sel(0, cons(X, Y))) → mark(X)
active(sel(s(X), cons(Y, Z))) → mark(sel(X, Z))
active(indx(nil, X)) → mark(nil)
active(indx(cons(X, Y), Z)) → mark(cons(sel(X, Z), indx(Y, Z)))
active(from(X)) → mark(cons(X, from(s(X))))
active(dbl1(0)) → mark(01)
active(dbl1(s(X))) → mark(s1(s1(dbl1(X))))
active(sel1(0, cons(X, Y))) → mark(X)
active(sel1(s(X), cons(Y, Z))) → mark(sel1(X, Z))
active(quote(0)) → mark(01)
active(quote(s(X))) → mark(s1(quote(X)))
active(quote(dbl(X))) → mark(dbl1(X))
active(quote(sel(X, Y))) → mark(sel1(X, Y))
active(dbl(X)) → dbl(active(X))
active(dbls(X)) → dbls(active(X))
active(sel(X1, X2)) → sel(active(X1), X2)
active(sel(X1, X2)) → sel(X1, active(X2))
active(indx(X1, X2)) → indx(active(X1), X2)
active(dbl1(X)) → dbl1(active(X))
active(s1(X)) → s1(active(X))
active(sel1(X1, X2)) → sel1(active(X1), X2)
active(sel1(X1, X2)) → sel1(X1, active(X2))
active(quote(X)) → quote(active(X))
dbl(mark(X)) → mark(dbl(X))
dbls(mark(X)) → mark(dbls(X))
sel(mark(X1), X2) → mark(sel(X1, X2))
sel(X1, mark(X2)) → mark(sel(X1, X2))
indx(mark(X1), X2) → mark(indx(X1, X2))
dbl1(mark(X)) → mark(dbl1(X))
s1(mark(X)) → mark(s1(X))
sel1(mark(X1), X2) → mark(sel1(X1, X2))
sel1(X1, mark(X2)) → mark(sel1(X1, X2))
quote(mark(X)) → mark(quote(X))
proper(dbl(X)) → dbl(proper(X))
proper(0) → ok(0)
proper(s(X)) → s(proper(X))
proper(dbls(X)) → dbls(proper(X))
proper(nil) → ok(nil)
proper(cons(X1, X2)) → cons(proper(X1), proper(X2))
proper(sel(X1, X2)) → sel(proper(X1), proper(X2))
proper(indx(X1, X2)) → indx(proper(X1), proper(X2))
proper(from(X)) → from(proper(X))
proper(dbl1(X)) → dbl1(proper(X))
proper(01) → ok(01)
proper(s1(X)) → s1(proper(X))
proper(sel1(X1, X2)) → sel1(proper(X1), proper(X2))
proper(quote(X)) → quote(proper(X))
dbl(ok(X)) → ok(dbl(X))
s(ok(X)) → ok(s(X))
dbls(ok(X)) → ok(dbls(X))
cons(ok(X1), ok(X2)) → ok(cons(X1, X2))
sel(ok(X1), ok(X2)) → ok(sel(X1, X2))
indx(ok(X1), ok(X2)) → ok(indx(X1, X2))
from(ok(X)) → ok(from(X))
dbl1(ok(X)) → ok(dbl1(X))
s1(ok(X)) → ok(s1(X))
sel1(ok(X1), ok(X2)) → ok(sel1(X1, X2))
quote(ok(X)) → ok(quote(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(dbl(s(z0))) → c1(S(s(dbl(z0))), S(dbl(z0)), DBL(z0))
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(from(z0)) → c8(CONS(z0, from(s(z0))), FROM(s(z0)), S(z0))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
S tuples:
ACTIVE(dbl(s(z0))) → c1(S(s(dbl(z0))), S(dbl(z0)), DBL(z0))
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(from(z0)) → c8(CONS(z0, from(s(z0))), FROM(s(z0)), S(z0))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c1, c3, c5, c7, c8, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63
(3) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(dbl(s(z0))) → c1(S(s(dbl(z0))), S(dbl(z0)), DBL(z0))
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
S tuples:
ACTIVE(dbl(s(z0))) → c1(S(s(dbl(z0))), S(dbl(z0)), DBL(z0))
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c1, c3, c5, c7, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8
(5) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
dbl(
s(
z0))) →
c1(
S(
s(
dbl(
z0))),
S(
dbl(
z0)),
DBL(
z0)) by
ACTIVE(dbl(s(mark(z0)))) → c1(S(s(mark(dbl(z0)))), S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(s(mark(dbl(z0)))), S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
S tuples:
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(s(mark(dbl(z0)))), S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c3, c5, c7, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c1
(7) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing tuple parts
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
S tuples:
ACTIVE(dbls(cons(z0, z1))) → c3(CONS(dbl(z0), dbls(z1)), DBL(z0), DBLS(z1))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c3, c5, c7, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1
(9) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
dbls(
cons(
z0,
z1))) →
c3(
CONS(
dbl(
z0),
dbls(
z1)),
DBL(
z0),
DBLS(
z1)) by
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(CONS(dbl(x0), mark(dbls(z0))), DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(CONS(mark(dbl(z0)), dbls(x1)), DBL(mark(z0)), DBLS(x1))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, x1))) → c3
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(CONS(dbl(x0), mark(dbls(z0))), DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(CONS(mark(dbl(z0)), dbls(x1)), DBL(mark(z0)), DBLS(x1))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, x1))) → c3
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(CONS(dbl(x0), mark(dbls(z0))), DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(CONS(mark(dbl(z0)), dbls(x1)), DBL(mark(z0)), DBLS(x1))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, x1))) → c3
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c5, c7, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c3, c3
(11) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(dbls(cons(x0, x1))) → c3
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(CONS(dbl(x0), mark(dbls(z0))), DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(CONS(mark(dbl(z0)), dbls(x1)), DBL(mark(z0)), DBLS(x1))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(CONS(dbl(x0), mark(dbls(z0))), DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(CONS(mark(dbl(z0)), dbls(x1)), DBL(mark(z0)), DBLS(x1))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c5, c7, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c3
(13) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 2 trailing tuple parts
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(indx(cons(z0, z1), z2)) → c7(CONS(sel(z0, z2), indx(z1, z2)), SEL(z0, z2), INDX(z1, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c5, c7, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c3, c3
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
indx(
cons(
z0,
z1),
z2)) →
c7(
CONS(
sel(
z0,
z2),
indx(
z1,
z2)),
SEL(
z0,
z2),
INDX(
z1,
z2)) by
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(CONS(sel(x0, z1), mark(indx(z0, z1))), SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(CONS(mark(sel(z0, z1)), indx(x1, z1)), SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(CONS(mark(sel(z0, z1)), indx(x1, mark(z1))), SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, x1), x2)) → c7
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(CONS(sel(x0, z1), mark(indx(z0, z1))), SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(CONS(mark(sel(z0, z1)), indx(x1, z1)), SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(CONS(mark(sel(z0, z1)), indx(x1, mark(z1))), SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, x1), x2)) → c7
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(CONS(sel(x0, z1), mark(indx(z0, z1))), SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(CONS(mark(sel(z0, z1)), indx(x1, z1)), SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(CONS(mark(sel(z0, z1)), indx(x1, mark(z1))), SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, x1), x2)) → c7
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c5, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c3, c3, c7, c7
(17) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(indx(cons(x0, x1), x2)) → c7
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(CONS(sel(x0, z1), mark(indx(z0, z1))), SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(CONS(mark(sel(z0, z1)), indx(x1, z1)), SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(CONS(mark(sel(z0, z1)), indx(x1, mark(z1))), SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(CONS(sel(x0, z1), mark(indx(z0, z1))), SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(CONS(mark(sel(z0, z1)), indx(x1, z1)), SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(CONS(mark(sel(z0, z1)), indx(x1, mark(z1))), SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c5, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c3, c3, c7
(19) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(dbl1(s(z0))) → c10(S1(s1(dbl1(z0))), S1(dbl1(z0)), DBL1(z0))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c5, c10, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c3, c3, c7, c7
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
ACTIVE(
dbl1(
s(
z0))) →
c10(
S1(
s1(
dbl1(
z0))),
S1(
dbl1(
z0)),
DBL1(
z0)) by
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
ACTIVE(dbl1(s(ok(z0)))) → c10(S1(s1(ok(dbl1(z0)))), S1(dbl1(ok(z0))), DBL1(ok(z0)))
ACTIVE(dbl1(s(x0))) → c10
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
ACTIVE(dbl1(s(ok(z0)))) → c10(S1(s1(ok(dbl1(z0)))), S1(dbl1(ok(z0))), DBL1(ok(z0)))
ACTIVE(dbl1(s(x0))) → c10
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
ACTIVE(dbl1(s(ok(z0)))) → c10(S1(s1(ok(dbl1(z0)))), S1(dbl1(ok(z0))), DBL1(ok(z0)))
ACTIVE(dbl1(s(x0))) → c10
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
ACTIVE, DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, PROPER, S, CONS, FROM, TOP
Compound Symbols:
c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c59, c60, c61, c62, c63, c8, c1, c3, c3, c7, c7, c10, c10
(23) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(dbl1(s(ok(z0)))) → c10(S1(s1(ok(dbl1(z0)))), S1(dbl1(ok(z0))), DBL1(ok(z0)))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
ACTIVE(dbl1(s(x0))) → c10
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
ACTIVE(dbl1(s(x0))) → c10
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP, ACTIVE, PROPER
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c62, c63, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58
(25) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
ACTIVE(dbl1(s(x0))) → c10
(26) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(z0)) → c62(TOP(proper(z0)), PROPER(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP, ACTIVE, PROPER
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c62, c63, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58
(27) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
mark(
z0)) →
c62(
TOP(
proper(
z0)),
PROPER(
z0)) by
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(0)) → c62(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(nil)) → c62(TOP(ok(nil)), PROPER(nil))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(01)) → c62(TOP(ok(01)), PROPER(01))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(x0)) → c62
(28) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(0)) → c62(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(nil)) → c62(TOP(ok(nil)), PROPER(nil))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(01)) → c62(TOP(ok(01)), PROPER(01))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(x0)) → c62
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(0)) → c62(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(nil)) → c62(TOP(ok(nil)), PROPER(nil))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(01)) → c62(TOP(ok(01)), PROPER(01))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(x0)) → c62
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP, ACTIVE, PROPER
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c63, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c62, c62
(29) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
TOP(mark(x0)) → c62
(30) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(0)) → c62(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(nil)) → c62(TOP(ok(nil)), PROPER(nil))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(01)) → c62(TOP(ok(01)), PROPER(01))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(0)) → c62(TOP(ok(0)), PROPER(0))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(nil)) → c62(TOP(ok(nil)), PROPER(nil))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(01)) → c62(TOP(ok(01)), PROPER(01))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP, ACTIVE, PROPER
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c63, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c62
(31) CdtRhsSimplificationProcessorProof (BOTH BOUNDS(ID, ID) transformation)
Removed 3 trailing tuple parts
(32) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP, ACTIVE, PROPER
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c63, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c62, c62
(33) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
We considered the (Usable) Rules:
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
from(ok(z0)) → ok(from(z0))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
s(ok(z0)) → ok(s(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(01) = 0
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(DBL(x1)) = 0
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = 0
POL(FROM(x1)) = 0
POL(INDX(x1, x2)) = 0
POL(PROPER(x1)) = 0
POL(QUOTE(x1)) = 0
POL(S(x1)) = 0
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = 0
POL(SEL1(x1, x2)) = 0
POL(TOP(x1)) = x1
POL(active(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c12(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1, x2)) = x1 + x2
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c20(x1, x2)) = x1 + x2
POL(c21(x1, x2)) = x1 + x2
POL(c22(x1, x2)) = x1 + x2
POL(c23(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2)) = x1 + x2
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c45(x1, x2)) = x1 + x2
POL(c47(x1, x2)) = x1 + x2
POL(c48(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c50(x1, x2, x3)) = x1 + x2 + x3
POL(c51(x1, x2, x3)) = x1 + x2 + x3
POL(c52(x1, x2, x3)) = x1 + x2 + x3
POL(c53(x1, x2)) = x1 + x2
POL(c54(x1, x2)) = x1 + x2
POL(c56(x1, x2)) = x1 + x2
POL(c57(x1, x2, x3)) = x1 + x2 + x3
POL(c58(x1, x2)) = x1 + x2
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(c62(x1)) = x1
POL(c62(x1, x2)) = x1 + x2
POL(c63(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(cons(x1, x2)) = 0
POL(dbl(x1)) = [1]
POL(dbl1(x1)) = [1]
POL(dbls(x1)) = [1]
POL(from(x1)) = [1]
POL(indx(x1, x2)) = [1]
POL(mark(x1)) = [1]
POL(nil) = 0
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(quote(x1)) = [1]
POL(s(x1)) = [1]
POL(s1(x1)) = [1]
POL(sel(x1, x2)) = [1]
POL(sel1(x1, x2)) = [1]
(34) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
K tuples:
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP, ACTIVE, PROPER
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c63, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c62, c62
(35) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
We considered the (Usable) Rules:
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
from(ok(z0)) → ok(from(z0))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
s(ok(z0)) → ok(s(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = [4]
POL(01) = [3]
POL(ACTIVE(x1)) = 0
POL(CONS(x1, x2)) = 0
POL(DBL(x1)) = 0
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = 0
POL(FROM(x1)) = 0
POL(INDX(x1, x2)) = 0
POL(PROPER(x1)) = 0
POL(QUOTE(x1)) = 0
POL(S(x1)) = 0
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = 0
POL(SEL1(x1, x2)) = 0
POL(TOP(x1)) = [4]x1
POL(active(x1)) = x1
POL(c1(x1, x2)) = x1 + x2
POL(c10(x1, x2, x3)) = x1 + x2 + x3
POL(c12(x1)) = x1
POL(c14(x1, x2)) = x1 + x2
POL(c15(x1)) = x1
POL(c16(x1)) = x1
POL(c17(x1, x2)) = x1 + x2
POL(c18(x1, x2)) = x1 + x2
POL(c19(x1, x2)) = x1 + x2
POL(c20(x1, x2)) = x1 + x2
POL(c21(x1, x2)) = x1 + x2
POL(c22(x1, x2)) = x1 + x2
POL(c23(x1, x2)) = x1 + x2
POL(c24(x1, x2)) = x1 + x2
POL(c25(x1, x2)) = x1 + x2
POL(c26(x1, x2)) = x1 + x2
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c3(x1, x2)) = x1 + x2
POL(c3(x1, x2, x3)) = x1 + x2 + x3
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c45(x1, x2)) = x1 + x2
POL(c47(x1, x2)) = x1 + x2
POL(c48(x1, x2)) = x1 + x2
POL(c5(x1)) = x1
POL(c50(x1, x2, x3)) = x1 + x2 + x3
POL(c51(x1, x2, x3)) = x1 + x2 + x3
POL(c52(x1, x2, x3)) = x1 + x2 + x3
POL(c53(x1, x2)) = x1 + x2
POL(c54(x1, x2)) = x1 + x2
POL(c56(x1, x2)) = x1 + x2
POL(c57(x1, x2, x3)) = x1 + x2 + x3
POL(c58(x1, x2)) = x1 + x2
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(c62(x1)) = x1
POL(c62(x1, x2)) = x1 + x2
POL(c63(x1, x2)) = x1 + x2
POL(c7(x1, x2)) = x1 + x2
POL(c7(x1, x2, x3)) = x1 + x2 + x3
POL(c8(x1)) = x1
POL(cons(x1, x2)) = 0
POL(dbl(x1)) = [4]
POL(dbl1(x1)) = [4]
POL(dbls(x1)) = [4]
POL(from(x1)) = [4]
POL(indx(x1, x2)) = [4]
POL(mark(x1)) = [4]
POL(nil) = [4]
POL(ok(x1)) = x1
POL(proper(x1)) = 0
POL(quote(x1)) = [4]
POL(s(x1)) = 0
POL(s1(x1)) = [4]
POL(sel(x1, x2)) = [4]
POL(sel1(x1, x2)) = [4]
(36) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(z0)) → c63(TOP(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
K tuples:
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP, ACTIVE, PROPER
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c63, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c62, c62
(37) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
TOP(
ok(
z0)) →
c63(
TOP(
active(
z0)),
ACTIVE(
z0)) by
TOP(ok(dbl(0))) → c63(TOP(mark(0)), ACTIVE(dbl(0)))
TOP(ok(dbl(s(z0)))) → c63(TOP(mark(s(s(dbl(z0))))), ACTIVE(dbl(s(z0))))
TOP(ok(dbls(nil))) → c63(TOP(mark(nil)), ACTIVE(dbls(nil)))
TOP(ok(dbls(cons(z0, z1)))) → c63(TOP(mark(cons(dbl(z0), dbls(z1)))), ACTIVE(dbls(cons(z0, z1))))
TOP(ok(sel(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel(0, cons(z0, z1))))
TOP(ok(sel(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel(z0, z2))), ACTIVE(sel(s(z0), cons(z1, z2))))
TOP(ok(indx(nil, z0))) → c63(TOP(mark(nil)), ACTIVE(indx(nil, z0)))
TOP(ok(indx(cons(z0, z1), z2))) → c63(TOP(mark(cons(sel(z0, z2), indx(z1, z2)))), ACTIVE(indx(cons(z0, z1), z2)))
TOP(ok(from(z0))) → c63(TOP(mark(cons(z0, from(s(z0))))), ACTIVE(from(z0)))
TOP(ok(dbl1(0))) → c63(TOP(mark(01)), ACTIVE(dbl1(0)))
TOP(ok(dbl1(s(z0)))) → c63(TOP(mark(s1(s1(dbl1(z0))))), ACTIVE(dbl1(s(z0))))
TOP(ok(sel1(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel1(0, cons(z0, z1))))
TOP(ok(sel1(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel1(z0, z2))), ACTIVE(sel1(s(z0), cons(z1, z2))))
TOP(ok(quote(0))) → c63(TOP(mark(01)), ACTIVE(quote(0)))
TOP(ok(quote(s(z0)))) → c63(TOP(mark(s1(quote(z0)))), ACTIVE(quote(s(z0))))
TOP(ok(quote(dbl(z0)))) → c63(TOP(mark(dbl1(z0))), ACTIVE(quote(dbl(z0))))
TOP(ok(quote(sel(z0, z1)))) → c63(TOP(mark(sel1(z0, z1))), ACTIVE(quote(sel(z0, z1))))
TOP(ok(dbl(z0))) → c63(TOP(dbl(active(z0))), ACTIVE(dbl(z0)))
TOP(ok(dbls(z0))) → c63(TOP(dbls(active(z0))), ACTIVE(dbls(z0)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(active(z0), z1)), ACTIVE(sel(z0, z1)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(z0, active(z1))), ACTIVE(sel(z0, z1)))
TOP(ok(indx(z0, z1))) → c63(TOP(indx(active(z0), z1)), ACTIVE(indx(z0, z1)))
TOP(ok(dbl1(z0))) → c63(TOP(dbl1(active(z0))), ACTIVE(dbl1(z0)))
TOP(ok(s1(z0))) → c63(TOP(s1(active(z0))), ACTIVE(s1(z0)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(active(z0), z1)), ACTIVE(sel1(z0, z1)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(z0, active(z1))), ACTIVE(sel1(z0, z1)))
TOP(ok(quote(z0))) → c63(TOP(quote(active(z0))), ACTIVE(quote(z0)))
TOP(ok(x0)) → c63
(38) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
TOP(ok(dbl(0))) → c63(TOP(mark(0)), ACTIVE(dbl(0)))
TOP(ok(dbl(s(z0)))) → c63(TOP(mark(s(s(dbl(z0))))), ACTIVE(dbl(s(z0))))
TOP(ok(dbls(nil))) → c63(TOP(mark(nil)), ACTIVE(dbls(nil)))
TOP(ok(dbls(cons(z0, z1)))) → c63(TOP(mark(cons(dbl(z0), dbls(z1)))), ACTIVE(dbls(cons(z0, z1))))
TOP(ok(sel(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel(0, cons(z0, z1))))
TOP(ok(sel(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel(z0, z2))), ACTIVE(sel(s(z0), cons(z1, z2))))
TOP(ok(indx(nil, z0))) → c63(TOP(mark(nil)), ACTIVE(indx(nil, z0)))
TOP(ok(indx(cons(z0, z1), z2))) → c63(TOP(mark(cons(sel(z0, z2), indx(z1, z2)))), ACTIVE(indx(cons(z0, z1), z2)))
TOP(ok(from(z0))) → c63(TOP(mark(cons(z0, from(s(z0))))), ACTIVE(from(z0)))
TOP(ok(dbl1(0))) → c63(TOP(mark(01)), ACTIVE(dbl1(0)))
TOP(ok(dbl1(s(z0)))) → c63(TOP(mark(s1(s1(dbl1(z0))))), ACTIVE(dbl1(s(z0))))
TOP(ok(sel1(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel1(0, cons(z0, z1))))
TOP(ok(sel1(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel1(z0, z2))), ACTIVE(sel1(s(z0), cons(z1, z2))))
TOP(ok(quote(0))) → c63(TOP(mark(01)), ACTIVE(quote(0)))
TOP(ok(quote(s(z0)))) → c63(TOP(mark(s1(quote(z0)))), ACTIVE(quote(s(z0))))
TOP(ok(quote(dbl(z0)))) → c63(TOP(mark(dbl1(z0))), ACTIVE(quote(dbl(z0))))
TOP(ok(quote(sel(z0, z1)))) → c63(TOP(mark(sel1(z0, z1))), ACTIVE(quote(sel(z0, z1))))
TOP(ok(dbl(z0))) → c63(TOP(dbl(active(z0))), ACTIVE(dbl(z0)))
TOP(ok(dbls(z0))) → c63(TOP(dbls(active(z0))), ACTIVE(dbls(z0)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(active(z0), z1)), ACTIVE(sel(z0, z1)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(z0, active(z1))), ACTIVE(sel(z0, z1)))
TOP(ok(indx(z0, z1))) → c63(TOP(indx(active(z0), z1)), ACTIVE(indx(z0, z1)))
TOP(ok(dbl1(z0))) → c63(TOP(dbl1(active(z0))), ACTIVE(dbl1(z0)))
TOP(ok(s1(z0))) → c63(TOP(s1(active(z0))), ACTIVE(s1(z0)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(active(z0), z1)), ACTIVE(sel1(z0, z1)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(z0, active(z1))), ACTIVE(sel1(z0, z1)))
TOP(ok(quote(z0))) → c63(TOP(quote(active(z0))), ACTIVE(quote(z0)))
TOP(ok(x0)) → c63
S tuples:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(ok(dbl(0))) → c63(TOP(mark(0)), ACTIVE(dbl(0)))
TOP(ok(dbl(s(z0)))) → c63(TOP(mark(s(s(dbl(z0))))), ACTIVE(dbl(s(z0))))
TOP(ok(dbls(nil))) → c63(TOP(mark(nil)), ACTIVE(dbls(nil)))
TOP(ok(dbls(cons(z0, z1)))) → c63(TOP(mark(cons(dbl(z0), dbls(z1)))), ACTIVE(dbls(cons(z0, z1))))
TOP(ok(sel(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel(0, cons(z0, z1))))
TOP(ok(sel(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel(z0, z2))), ACTIVE(sel(s(z0), cons(z1, z2))))
TOP(ok(indx(nil, z0))) → c63(TOP(mark(nil)), ACTIVE(indx(nil, z0)))
TOP(ok(indx(cons(z0, z1), z2))) → c63(TOP(mark(cons(sel(z0, z2), indx(z1, z2)))), ACTIVE(indx(cons(z0, z1), z2)))
TOP(ok(from(z0))) → c63(TOP(mark(cons(z0, from(s(z0))))), ACTIVE(from(z0)))
TOP(ok(dbl1(0))) → c63(TOP(mark(01)), ACTIVE(dbl1(0)))
TOP(ok(dbl1(s(z0)))) → c63(TOP(mark(s1(s1(dbl1(z0))))), ACTIVE(dbl1(s(z0))))
TOP(ok(sel1(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel1(0, cons(z0, z1))))
TOP(ok(sel1(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel1(z0, z2))), ACTIVE(sel1(s(z0), cons(z1, z2))))
TOP(ok(quote(0))) → c63(TOP(mark(01)), ACTIVE(quote(0)))
TOP(ok(quote(s(z0)))) → c63(TOP(mark(s1(quote(z0)))), ACTIVE(quote(s(z0))))
TOP(ok(quote(dbl(z0)))) → c63(TOP(mark(dbl1(z0))), ACTIVE(quote(dbl(z0))))
TOP(ok(quote(sel(z0, z1)))) → c63(TOP(mark(sel1(z0, z1))), ACTIVE(quote(sel(z0, z1))))
TOP(ok(dbl(z0))) → c63(TOP(dbl(active(z0))), ACTIVE(dbl(z0)))
TOP(ok(dbls(z0))) → c63(TOP(dbls(active(z0))), ACTIVE(dbls(z0)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(active(z0), z1)), ACTIVE(sel(z0, z1)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(z0, active(z1))), ACTIVE(sel(z0, z1)))
TOP(ok(indx(z0, z1))) → c63(TOP(indx(active(z0), z1)), ACTIVE(indx(z0, z1)))
TOP(ok(dbl1(z0))) → c63(TOP(dbl1(active(z0))), ACTIVE(dbl1(z0)))
TOP(ok(s1(z0))) → c63(TOP(s1(active(z0))), ACTIVE(s1(z0)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(active(z0), z1)), ACTIVE(sel1(z0, z1)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(z0, active(z1))), ACTIVE(sel1(z0, z1)))
TOP(ok(quote(z0))) → c63(TOP(quote(active(z0))), ACTIVE(quote(z0)))
TOP(ok(x0)) → c63
K tuples:
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, ACTIVE, PROPER, TOP
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c5, c12, c14, c15, c16, c17, c18, c19, c20, c21, c22, c23, c24, c25, c26, c8, c1, c3, c3, c7, c7, c10, c45, c47, c48, c50, c51, c52, c53, c54, c56, c57, c58, c62, c62, c63, c63
(39) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
ACTIVE(sel(s(z0), cons(z1, z2))) → c5(SEL(z0, z2))
ACTIVE(sel1(s(z0), cons(z1, z2))) → c12(SEL1(z0, z2))
ACTIVE(quote(s(z0))) → c14(S1(quote(z0)), QUOTE(z0))
ACTIVE(quote(dbl(z0))) → c15(DBL1(z0))
ACTIVE(quote(sel(z0, z1))) → c16(SEL1(z0, z1))
ACTIVE(dbl(z0)) → c17(DBL(active(z0)), ACTIVE(z0))
ACTIVE(dbls(z0)) → c18(DBLS(active(z0)), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c19(SEL(active(z0), z1), ACTIVE(z0))
ACTIVE(sel(z0, z1)) → c20(SEL(z0, active(z1)), ACTIVE(z1))
ACTIVE(indx(z0, z1)) → c21(INDX(active(z0), z1), ACTIVE(z0))
ACTIVE(dbl1(z0)) → c22(DBL1(active(z0)), ACTIVE(z0))
ACTIVE(s1(z0)) → c23(S1(active(z0)), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c24(SEL1(active(z0), z1), ACTIVE(z0))
ACTIVE(sel1(z0, z1)) → c25(SEL1(z0, active(z1)), ACTIVE(z1))
ACTIVE(quote(z0)) → c26(QUOTE(active(z0)), ACTIVE(z0))
ACTIVE(from(z0)) → c8(S(z0))
ACTIVE(dbl(s(x0))) → c1(S(dbl(x0)), DBL(x0))
ACTIVE(dbl(s(mark(z0)))) → c1(S(dbl(mark(z0))), DBL(mark(z0)))
ACTIVE(dbls(cons(x0, ok(z0)))) → c3(CONS(dbl(x0), ok(dbls(z0))), DBL(x0), DBLS(ok(z0)))
ACTIVE(dbls(cons(ok(z0), x1))) → c3(CONS(ok(dbl(z0)), dbls(x1)), DBL(ok(z0)), DBLS(x1))
ACTIVE(dbls(cons(x0, mark(z0)))) → c3(DBL(x0), DBLS(mark(z0)))
ACTIVE(dbls(cons(mark(z0), x1))) → c3(DBL(mark(z0)), DBLS(x1))
ACTIVE(indx(cons(x0, ok(z0)), ok(z1))) → c7(CONS(sel(x0, ok(z1)), ok(indx(z0, z1))), SEL(x0, ok(z1)), INDX(ok(z0), ok(z1)))
ACTIVE(indx(cons(ok(z0), x1), ok(z1))) → c7(CONS(ok(sel(z0, z1)), indx(x1, ok(z1))), SEL(ok(z0), ok(z1)), INDX(x1, ok(z1)))
ACTIVE(indx(cons(x0, mark(z0)), z1)) → c7(SEL(x0, z1), INDX(mark(z0), z1))
ACTIVE(indx(cons(mark(z0), x1), z1)) → c7(SEL(mark(z0), z1), INDX(x1, z1))
ACTIVE(indx(cons(z0, x1), mark(z1))) → c7(SEL(z0, mark(z1)), INDX(x1, mark(z1)))
ACTIVE(dbl1(s(mark(z0)))) → c10(S1(s1(mark(dbl1(z0)))), S1(dbl1(mark(z0))), DBL1(mark(z0)))
PROPER(dbl(z0)) → c45(DBL(proper(z0)), PROPER(z0))
PROPER(s(z0)) → c47(S(proper(z0)), PROPER(z0))
PROPER(dbls(z0)) → c48(DBLS(proper(z0)), PROPER(z0))
PROPER(cons(z0, z1)) → c50(CONS(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(sel(z0, z1)) → c51(SEL(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(indx(z0, z1)) → c52(INDX(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(from(z0)) → c53(FROM(proper(z0)), PROPER(z0))
PROPER(dbl1(z0)) → c54(DBL1(proper(z0)), PROPER(z0))
PROPER(s1(z0)) → c56(S1(proper(z0)), PROPER(z0))
PROPER(sel1(z0, z1)) → c57(SEL1(proper(z0), proper(z1)), PROPER(z0), PROPER(z1))
PROPER(quote(z0)) → c58(QUOTE(proper(z0)), PROPER(z0))
TOP(mark(dbl(z0))) → c62(TOP(dbl(proper(z0))), PROPER(dbl(z0)))
TOP(mark(s(z0))) → c62(TOP(s(proper(z0))), PROPER(s(z0)))
TOP(mark(dbls(z0))) → c62(TOP(dbls(proper(z0))), PROPER(dbls(z0)))
TOP(mark(cons(z0, z1))) → c62(TOP(cons(proper(z0), proper(z1))), PROPER(cons(z0, z1)))
TOP(mark(sel(z0, z1))) → c62(TOP(sel(proper(z0), proper(z1))), PROPER(sel(z0, z1)))
TOP(mark(indx(z0, z1))) → c62(TOP(indx(proper(z0), proper(z1))), PROPER(indx(z0, z1)))
TOP(mark(from(z0))) → c62(TOP(from(proper(z0))), PROPER(from(z0)))
TOP(mark(dbl1(z0))) → c62(TOP(dbl1(proper(z0))), PROPER(dbl1(z0)))
TOP(mark(s1(z0))) → c62(TOP(s1(proper(z0))), PROPER(s1(z0)))
TOP(mark(sel1(z0, z1))) → c62(TOP(sel1(proper(z0), proper(z1))), PROPER(sel1(z0, z1)))
TOP(mark(quote(z0))) → c62(TOP(quote(proper(z0))), PROPER(quote(z0)))
TOP(ok(dbl(0))) → c63(TOP(mark(0)), ACTIVE(dbl(0)))
TOP(ok(dbl(s(z0)))) → c63(TOP(mark(s(s(dbl(z0))))), ACTIVE(dbl(s(z0))))
TOP(ok(dbls(nil))) → c63(TOP(mark(nil)), ACTIVE(dbls(nil)))
TOP(ok(dbls(cons(z0, z1)))) → c63(TOP(mark(cons(dbl(z0), dbls(z1)))), ACTIVE(dbls(cons(z0, z1))))
TOP(ok(sel(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel(0, cons(z0, z1))))
TOP(ok(sel(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel(z0, z2))), ACTIVE(sel(s(z0), cons(z1, z2))))
TOP(ok(indx(nil, z0))) → c63(TOP(mark(nil)), ACTIVE(indx(nil, z0)))
TOP(ok(indx(cons(z0, z1), z2))) → c63(TOP(mark(cons(sel(z0, z2), indx(z1, z2)))), ACTIVE(indx(cons(z0, z1), z2)))
TOP(ok(from(z0))) → c63(TOP(mark(cons(z0, from(s(z0))))), ACTIVE(from(z0)))
TOP(ok(dbl1(0))) → c63(TOP(mark(01)), ACTIVE(dbl1(0)))
TOP(ok(dbl1(s(z0)))) → c63(TOP(mark(s1(s1(dbl1(z0))))), ACTIVE(dbl1(s(z0))))
TOP(ok(sel1(0, cons(z0, z1)))) → c63(TOP(mark(z0)), ACTIVE(sel1(0, cons(z0, z1))))
TOP(ok(sel1(s(z0), cons(z1, z2)))) → c63(TOP(mark(sel1(z0, z2))), ACTIVE(sel1(s(z0), cons(z1, z2))))
TOP(ok(quote(0))) → c63(TOP(mark(01)), ACTIVE(quote(0)))
TOP(ok(quote(s(z0)))) → c63(TOP(mark(s1(quote(z0)))), ACTIVE(quote(s(z0))))
TOP(ok(quote(dbl(z0)))) → c63(TOP(mark(dbl1(z0))), ACTIVE(quote(dbl(z0))))
TOP(ok(quote(sel(z0, z1)))) → c63(TOP(mark(sel1(z0, z1))), ACTIVE(quote(sel(z0, z1))))
TOP(ok(dbl(z0))) → c63(TOP(dbl(active(z0))), ACTIVE(dbl(z0)))
TOP(ok(dbls(z0))) → c63(TOP(dbls(active(z0))), ACTIVE(dbls(z0)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(active(z0), z1)), ACTIVE(sel(z0, z1)))
TOP(ok(sel(z0, z1))) → c63(TOP(sel(z0, active(z1))), ACTIVE(sel(z0, z1)))
TOP(ok(indx(z0, z1))) → c63(TOP(indx(active(z0), z1)), ACTIVE(indx(z0, z1)))
TOP(ok(dbl1(z0))) → c63(TOP(dbl1(active(z0))), ACTIVE(dbl1(z0)))
TOP(ok(s1(z0))) → c63(TOP(s1(active(z0))), ACTIVE(s1(z0)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(active(z0), z1)), ACTIVE(sel1(z0, z1)))
TOP(ok(sel1(z0, z1))) → c63(TOP(sel1(z0, active(z1))), ACTIVE(sel1(z0, z1)))
TOP(ok(quote(z0))) → c63(TOP(quote(active(z0))), ACTIVE(quote(z0)))
(40) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
TOP(ok(x0)) → c63
S tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
TOP(ok(x0)) → c63
K tuples:
TOP(mark(0)) → c62(TOP(ok(0)))
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(01)) → c62(TOP(ok(01)))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM, TOP
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61, c62, c63
(41) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
TOP(mark(01)) → c62(TOP(ok(01)))
TOP(ok(x0)) → c63
TOP(mark(nil)) → c62(TOP(ok(nil)))
TOP(mark(0)) → c62(TOP(ok(0)))
(42) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
K tuples:none
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(43) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^3))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = x12 + x12·x2
POL(DBL(x1)) = 0
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = 0
POL(FROM(x1)) = x1 + x12
POL(INDX(x1, x2)) = 0
POL(QUOTE(x1)) = 0
POL(S(x1)) = x1 + x12
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = 0
POL(SEL1(x1, x2)) = 0
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = 0
POL(ok(x1)) = [1] + x1
(44) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(45) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [2]x1
POL(DBL(x1)) = [5]x1
POL(DBL1(x1)) = x1
POL(DBLS(x1)) = [3]x1
POL(FROM(x1)) = 0
POL(INDX(x1, x2)) = 0
POL(QUOTE(x1)) = 0
POL(S(x1)) = [4]x1
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = [3]x2
POL(SEL1(x1, x2)) = [5]x1 + [5]x2
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [5] + x1
(46) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
SEL(mark(z0), z1) → c31(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(47) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [4]x1 + [3]x2
POL(DBL(x1)) = 0
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = 0
POL(FROM(x1)) = [4]x1
POL(INDX(x1, x2)) = [4]x2
POL(QUOTE(x1)) = 0
POL(S(x1)) = 0
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = 0
POL(SEL1(x1, x2)) = 0
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = [5]
POL(ok(x1)) = [2] + x1
(48) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
SEL(mark(z0), z1) → c31(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(49) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
INDX(mark(z0), z1) → c34(INDX(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [4]x1
POL(DBL(x1)) = [2]x1
POL(DBL1(x1)) = [4]x1
POL(DBLS(x1)) = 0
POL(FROM(x1)) = [3]x1
POL(INDX(x1, x2)) = x1 + [4]x2
POL(QUOTE(x1)) = 0
POL(S(x1)) = [4]x1
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = 0
POL(SEL1(x1, x2)) = [4]x2
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(50) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
SEL(mark(z0), z1) → c31(SEL(z0, z1))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(51) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
SEL(mark(z0), z1) → c31(SEL(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [2]x2
POL(DBL(x1)) = 0
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = [3]x1
POL(FROM(x1)) = [2]x1
POL(INDX(x1, x2)) = [4]x1 + [5]x2
POL(QUOTE(x1)) = 0
POL(S(x1)) = [2]x1
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = x1
POL(SEL1(x1, x2)) = 0
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [5] + x1
(52) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(53) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [2]x1
POL(DBL(x1)) = [4]x1
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = 0
POL(FROM(x1)) = 0
POL(INDX(x1, x2)) = 0
POL(QUOTE(x1)) = x1
POL(S(x1)) = [3]x1
POL(S1(x1)) = 0
POL(SEL(x1, x2)) = [4]x2
POL(SEL1(x1, x2)) = [2]x2
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = [4] + x1
(54) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(55) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S1(mark(z0)) → c38(S1(z0))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [4]x1 + [2]x2
POL(DBL(x1)) = [4]x1
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = 0
POL(FROM(x1)) = [2]x1
POL(INDX(x1, x2)) = x2
POL(QUOTE(x1)) = 0
POL(S(x1)) = [4]x1
POL(S1(x1)) = x1
POL(SEL(x1, x2)) = [4]x1
POL(SEL1(x1, x2)) = 0
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = [1] + x1
POL(ok(x1)) = x1
(56) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:
S1(ok(z0)) → c39(S1(z0))
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S1(mark(z0)) → c38(S1(z0))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(57) CdtPolyRedPairProof (UPPER BOUND (ADD(O(n^1))) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
S1(ok(z0)) → c39(S1(z0))
We considered the (Usable) Rules:none
And the Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(CONS(x1, x2)) = [2]x2
POL(DBL(x1)) = x1
POL(DBL1(x1)) = 0
POL(DBLS(x1)) = [4]x1
POL(FROM(x1)) = [4]x1
POL(INDX(x1, x2)) = [2]x2
POL(QUOTE(x1)) = 0
POL(S(x1)) = 0
POL(S1(x1)) = [4]x1
POL(SEL(x1, x2)) = 0
POL(SEL1(x1, x2)) = [4]x1
POL(c27(x1)) = x1
POL(c28(x1)) = x1
POL(c29(x1)) = x1
POL(c30(x1)) = x1
POL(c31(x1)) = x1
POL(c32(x1)) = x1
POL(c33(x1)) = x1
POL(c34(x1)) = x1
POL(c35(x1)) = x1
POL(c36(x1)) = x1
POL(c37(x1)) = x1
POL(c38(x1)) = x1
POL(c39(x1)) = x1
POL(c40(x1)) = x1
POL(c41(x1)) = x1
POL(c42(x1)) = x1
POL(c43(x1)) = x1
POL(c44(x1)) = x1
POL(c59(x1)) = x1
POL(c60(x1)) = x1
POL(c61(x1)) = x1
POL(mark(x1)) = x1
POL(ok(x1)) = [1] + x1
(58) Obligation:
Complexity Dependency Tuples Problem
Rules:
active(dbl(0)) → mark(0)
active(dbl(s(z0))) → mark(s(s(dbl(z0))))
active(dbls(nil)) → mark(nil)
active(dbls(cons(z0, z1))) → mark(cons(dbl(z0), dbls(z1)))
active(sel(0, cons(z0, z1))) → mark(z0)
active(sel(s(z0), cons(z1, z2))) → mark(sel(z0, z2))
active(indx(nil, z0)) → mark(nil)
active(indx(cons(z0, z1), z2)) → mark(cons(sel(z0, z2), indx(z1, z2)))
active(from(z0)) → mark(cons(z0, from(s(z0))))
active(dbl1(0)) → mark(01)
active(dbl1(s(z0))) → mark(s1(s1(dbl1(z0))))
active(sel1(0, cons(z0, z1))) → mark(z0)
active(sel1(s(z0), cons(z1, z2))) → mark(sel1(z0, z2))
active(quote(0)) → mark(01)
active(quote(s(z0))) → mark(s1(quote(z0)))
active(quote(dbl(z0))) → mark(dbl1(z0))
active(quote(sel(z0, z1))) → mark(sel1(z0, z1))
active(dbl(z0)) → dbl(active(z0))
active(dbls(z0)) → dbls(active(z0))
active(sel(z0, z1)) → sel(active(z0), z1)
active(sel(z0, z1)) → sel(z0, active(z1))
active(indx(z0, z1)) → indx(active(z0), z1)
active(dbl1(z0)) → dbl1(active(z0))
active(s1(z0)) → s1(active(z0))
active(sel1(z0, z1)) → sel1(active(z0), z1)
active(sel1(z0, z1)) → sel1(z0, active(z1))
active(quote(z0)) → quote(active(z0))
dbl(mark(z0)) → mark(dbl(z0))
dbl(ok(z0)) → ok(dbl(z0))
dbls(mark(z0)) → mark(dbls(z0))
dbls(ok(z0)) → ok(dbls(z0))
sel(mark(z0), z1) → mark(sel(z0, z1))
sel(z0, mark(z1)) → mark(sel(z0, z1))
sel(ok(z0), ok(z1)) → ok(sel(z0, z1))
indx(mark(z0), z1) → mark(indx(z0, z1))
indx(ok(z0), ok(z1)) → ok(indx(z0, z1))
dbl1(mark(z0)) → mark(dbl1(z0))
dbl1(ok(z0)) → ok(dbl1(z0))
s1(mark(z0)) → mark(s1(z0))
s1(ok(z0)) → ok(s1(z0))
sel1(mark(z0), z1) → mark(sel1(z0, z1))
sel1(z0, mark(z1)) → mark(sel1(z0, z1))
sel1(ok(z0), ok(z1)) → ok(sel1(z0, z1))
quote(mark(z0)) → mark(quote(z0))
quote(ok(z0)) → ok(quote(z0))
proper(dbl(z0)) → dbl(proper(z0))
proper(0) → ok(0)
proper(s(z0)) → s(proper(z0))
proper(dbls(z0)) → dbls(proper(z0))
proper(nil) → ok(nil)
proper(cons(z0, z1)) → cons(proper(z0), proper(z1))
proper(sel(z0, z1)) → sel(proper(z0), proper(z1))
proper(indx(z0, z1)) → indx(proper(z0), proper(z1))
proper(from(z0)) → from(proper(z0))
proper(dbl1(z0)) → dbl1(proper(z0))
proper(01) → ok(01)
proper(s1(z0)) → s1(proper(z0))
proper(sel1(z0, z1)) → sel1(proper(z0), proper(z1))
proper(quote(z0)) → quote(proper(z0))
s(ok(z0)) → ok(s(z0))
cons(ok(z0), ok(z1)) → ok(cons(z0, z1))
from(ok(z0)) → ok(from(z0))
top(mark(z0)) → top(proper(z0))
top(ok(z0)) → top(active(z0))
Tuples:
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
S tuples:none
K tuples:
S(ok(z0)) → c59(S(z0))
CONS(ok(z0), ok(z1)) → c60(CONS(z0, z1))
FROM(ok(z0)) → c61(FROM(z0))
DBL(mark(z0)) → c27(DBL(z0))
DBL(ok(z0)) → c28(DBL(z0))
DBLS(mark(z0)) → c29(DBLS(z0))
DBLS(ok(z0)) → c30(DBLS(z0))
SEL(z0, mark(z1)) → c32(SEL(z0, z1))
SEL(ok(z0), ok(z1)) → c33(SEL(z0, z1))
DBL1(mark(z0)) → c36(DBL1(z0))
DBL1(ok(z0)) → c37(DBL1(z0))
SEL1(mark(z0), z1) → c40(SEL1(z0, z1))
SEL1(z0, mark(z1)) → c41(SEL1(z0, z1))
SEL1(ok(z0), ok(z1)) → c42(SEL1(z0, z1))
INDX(ok(z0), ok(z1)) → c35(INDX(z0, z1))
INDX(mark(z0), z1) → c34(INDX(z0, z1))
SEL(mark(z0), z1) → c31(SEL(z0, z1))
QUOTE(mark(z0)) → c43(QUOTE(z0))
QUOTE(ok(z0)) → c44(QUOTE(z0))
S1(mark(z0)) → c38(S1(z0))
S1(ok(z0)) → c39(S1(z0))
Defined Rule Symbols:
active, dbl, dbls, sel, indx, dbl1, s1, sel1, quote, proper, s, cons, from, top
Defined Pair Symbols:
DBL, DBLS, SEL, INDX, DBL1, S1, SEL1, QUOTE, S, CONS, FROM
Compound Symbols:
c27, c28, c29, c30, c31, c32, c33, c34, c35, c36, c37, c38, c39, c40, c41, c42, c43, c44, c59, c60, c61
(59) SIsEmptyProof (EQUIVALENT transformation)
The set S is empty
(60) BOUNDS(O(1), O(1))